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PREFACE

The development of prototype multilevel secure operating systems

has been a significant advance in the field of computer security.

Automated message handling systems represent a major application for

such systems. However, the requirement that users be able to

* . conveniently process streams and collections of messages at different

security levels may collide with constraints imposed by an operating

system's attempts to separate the processing of classified data strictly

by security level.

This Note, prepared under Contract No. DNAOO1-79-C-0201 for the

Defense Nuclear Agency, deals with certain aspects of security-

policy/technology interactions in message system designs for multilevel

secure environments. The work reported here focuses primarily on

kernel-based secure operating systems (KSOS) and two unique message

system architectures developed at Rand (MH and SMH).

The Note examines the conflict between requirements and outlines a

number of design alternatives that might resolve or ameliorate it. In

addition, a number of basic security issues in systems design--such as

granularity of security levels and downgrading--are reviewed. Thus, the

study should be of use to message systems designers and to designers oft

related applications software. It should also be of interest to policy * 0
0
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SUMMARY

Highly capable secure computer operating systems will be generally

available in the near future, and multilevel secure message services

will be needed in many applications of such systems. The design of

multilevel secure message systems involves tradeoffs among security

requirements, functionality, convenience, technical feasibility, cost,

and other factors. This Note focuses principally on the interaction

between security policy and technical design in the implementation of

multilevel secure message systems. For example, such systems must

violate a common current computer implementation of the DoD security

policy in order to achieve an acceptable level of functionality. The

basic properties of message systems are briefly reviewed, several key

technical issues are discussed (including the concepts of granularity

and trust), and a variety of possible design approaches are outlined

and informally evaluated. These approaches are based upon studies of

KSOS (a prototype of which, KSOS-II, has been implemented and is being

evaluated) and two Rand-developed message systems, MH and SKH.
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I. INTRODUCTION

As the interactive use of computers increases, the need for

security in computer systems becomes more widely recognized. Current

developments in operating systems security'will soon provide sub-

stantially more powerful security capabilities (Walker, 1980). But

little is known about how to best employ such capabilities in

applications software. This Note focuses on one important application

for secure computer systems, multilevel secure message systems.

Computer-based message systems are increasingly becoming essential

components of military command center support; they have been a major

application of computers within the intelligence community for several

years. In these contexts, messages of many different classifications

must be dealt with simultaneously in a way that both ensures the

protection appropriate to the different security levels and makes it

convenient for authorized personnel to deal with those messages. This

Note reviews some of the technical and policy issues associated with

designing a multilevel message system to operate within a secure

computing system. Many of the security issues that arise in building

message systems also arise in other applications of secure systems

(database systems, etc.). We therefore anticipate that this study will

contribute to a variety of secure computer applications.

There has been very little analytical study of security issues, yet

security policy considerations will influence the directions of

technology development and application. To date, most technological

developments in internal computer system security have been driven by
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fairly simple ideas about what security policies must be enforced by

secure computer systems. The result, in several cases, has been

unnecessarily elaborate and unwieldy designs, since technologists

designing the systems have not challenged any of the security

requirements or even examined in depth the nature of the policy whose

details they were commissioned to implement. This Note attempts to

illustrate how security policy considerations may drive the process of

systems design.

The goal of any secure computing system is to forbid access to

classified data by unauthorized users or unauthorized user programs.

Systems are designed to implement a security policy or model which, if

rigorously enforced, can guarantee no improper leakage of classified

data. The basic security model that underlies today's secure systems

(Bell and LaPadula, 1974) may be paraphrased as follows:

1. Every user, file, and program possesses a single level of

security clearance.

2. A user may not invoke a process with a higher level of

classification than his own security clearance (e.g., a user

cleared to the Confidential level may not invoke a program that

is cleared to the Secret level).

3. A process at a given clearance level may not read data

classified at a higher level (e.g., a Secret-level process may

not read Top Secret data).

4. A process at a given clearance level may not write data at a

lower level (e.g., a Secret-level process may not write a

Confidential file).



This model is simple and unambiguous, and its rigorous implementation

will indeed achieve the goals of data security. At the same time,

however, it is crude and inflexible; as will be seen, its absolute

separation of levels can be an obstacle to the functionality required in

various applications, including multilevel message systems. Expansions

of the model to include data integrity have been proposed by Biba (1975)

and Dion (1981).

The implementation technique of present multilevel secure operating

systems designs such as KSOS (McCauley et al., 1978, 1979) is to

formally verify a "kernel" of the operating system, proving that it

faithfully enforces an underlying security model and protects the

security of data. The resulting software is then termed trusted; i.e.,

it has undergone some certification or verification process. The user's

application domain consists of untrusted applications software built

upon the kernel. However, as will be illustrated later, applications

that must process data of varying security levels (e.g., a multilevel

message handling system) may need to violate the basic security model to

some degree if they are to be useful. This conflict can be resolved by

developing additional "trusted" software which may then violate the

basic security model in specific, limited ways; but this additional

software must also be certified or verified, often at considerable cost.

A key task for the applications software designer, then, is to determine

how to least violate the basic security model, limit the amount of

additional trusted code, and yet achieve the functionality demanded by

the application.

. . . . . . . . . . ..°. .... . . . .
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Current message system technology generally divides message system

functions into (1) operating system functions (the "mailer") for

distributing messages within the system and to and from networks and (2)

interactive programs that allow the user to manipulate (e.g., read,

:" save, and compose) a collection of messages. In this Note we focus

mainly on the second set of functions. Implementation of the first set

in a multilevel secure operating system is discussed in McCauley et al.

(1979). Security aspects of the second set of functions are exained in

Landwehr (1980) and Miller and Resnick (1981).

It should be emphasized that little experience exists in dealing

with messages at different levels simultaneously on the same computer.

The National Military Indications Center and the National Military

Command Center (NMCC) have been using a system which permits messages to

be read and retrieved on-line using a CRT terminal (Defense Intelligence

Agency, 197o; but in these situations, all users are cleared to the

highest security level of the messages in the system, and the system is

not formally responsible for preventing unauthorized individuals from

accessing stored messages of different classifications. The Sigma

Message Handling System developed by ISI for the Military Message

Experiment (Ames and Oestreicher, 1978) has been used to deal with

different classifications of messages, although it was not actually

secure. This experiment was significant in that Sigma simulated the

behavior of one kind of system that might actually provide guarantees of

separation among various levels of classification. But aside from these

limited applications, there is little in the way of an experiential base

4
to guide the designer of future message systems intended to operate in

the multilevel secure environment.

.
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Security is a pragmatic matter. There is a risk that something

undesirable will happen to information stored in a computer, and that

risk is balanced against the cost of various techniques and measures for

protecting that information. Both the design and use of a secure

computer system for a particular application must be based on an

understanding of these tradeoffs. Hence, the purpose of this Note is

threefold: (1) to expose some policy questions that affect security,

functionality, and system efficiency; (2) to examine how security

requirements in a multilevel secure computer system impinge upon message

system requirements; and (3) to offer a taxonomy of options for merging

the two sets of requirements, using current technology.

° . ..
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II. MESSAGE SYSTEMS OVERVIEW

The basic features of message systems are briefly reviewed here, to

provide a basis for the more detailed discussions of technical and

policy issues in subsequent sections. The NMCC Information Display

Subsystem (NIDS) is outlined, as an exemplar of an important class of

message system applications.

WHAT AUTOMATED MESSAGE SYSTEMS DO

A message handling system, manual or automated, must possess

certain features to achieve a useful level of functionality. In manual

systems, some of the features listed below are not explicitly

identifiable, since they may reside in the user rather than the system.

Other features, particularly those that implement support capabilities,

are required only by automated systems (which may introduce new failure

modes as well as new functions).

The users of automated message systems get some form of computer

assistance in performing the following basic tasks:

1. Message receipt. New messages awaiting a user are brought to

his attention and incorporated into his own files.

2. Message distribution. Messages are distributed to other users,

either in the same system or on other systems on a common

network; the user may forward (i.e., redistribute) old

messages, in addition to sending new messages.

3. Message storage. Messages of more than passing interest can be

saved for later reference.
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4. Message retrieval. Saved messages can be recalled for further

handling.

5. Message composition. New messages can be constructed, using

new text, stored materials, or both.

6. Message editing and annotation. Stored messages can be

modified by the user; a stored message may be an unfinished new

message or an old message.

7. Message coordination. Several parties can coordinate and

verify agreement on a draft message (this function and the

message release function apply to systems operating under

institutional constraints, e.g., in intelligence agencies).

8. Message release. The person responsible for the transmission

of a message in the name of an organization can authorize

distribution to specified recipients.

In addition to these basic functions, various support capabilities

may enhance the functionality of an automated system; some may be

required to alleviate new problems associated with an automated system.

Fairly straightforward enhancements include

1. Report generators which provide the proper format for a variety

of standard reports.

2. Statistics gathering subsystems which may, for example, keep

tallies of messages by type, length, level, recipient, etc.

Support features mandated by the automated environment may include
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1. Hold files for putting aside current work.

2. File backup and recovery procedures.

The principal motivations for the introduction of automated message

handling systems are

1. Increased throughput, deriving from faster distribution,

increased message composition efficiency, and more orderly and

convenient filing.

2. Better accountability via system-supported audit trails.

3. Compatibility with other systems employing digitally encoded

data.

SECURITY CONSIDERATINS

It is unlikely that technologies will or should be developed that

effectively replace prudence and personal responsibility on the part of

users. It is reasonable, however, to seek assurances that the automated

system is no more vulnerable to security violations than the manual

system it replaces.

New potential risks may be introduced with the new capabilities.

Some risks are associated with the increased volume of messages and the

greater speed and ease of data transmission, both of which may amplify

the effects of ordinary human error. To counter this, additional

verification protocols might be imposed on the user, requiring him to

corroborate his intentions before crucial actions are executed. Other

risks are associated with the display medium, which may add anonymity

and sameness to messages (e.g., the typical CRT display cannot provide
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different type faces, colors, page sizes, etc.) and thus may reduce user

sensitivity to the security level of current operations. This problem

might be overcome by arranging to constantly display the security level

at which the user is working. However, we must determine the potential

severity of such risks before proposing to alleviate them through

technological solutions.

In automated systems, just as in manual systems, apparent

improvements in security are most easily made at the expense of user

convenience and flexibility. Designers of secure message systems need

to balance the potential benefits of decreased risk against the costs in

user time, user compliance, and overall system function. Controlled and

limited compromises to the system security model may be required to

attain even minimum utility--for example, to allow the user to see a

listing of all new messages. The potential risks inherent in these

modifications must be evaluated in terms of exploitability by would-be

penetrators, and not rejected out of hand because they violate the

requirements of the basic security model.

THE NMCC INFORMATION DISPLAY SUBSYSTEM (NIDS)

NIDS is a CRT-terminal-based message handling system used by the

NMCC for the dissemination of incoming messages to users, and for the

subsequent manipulation, editing, filing, and redirecting of those

messages. It also provides for the creation and internal dissemination

of original messages.

Incoming messages are distributed to users who are logged on to

previously defined positions (roughly equivalent to accounts), according
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to interest profiles established for each position. Messages are placed

in the message queue of each position whose profile criteria match that

of the message. All incoming messages are stored in a message file,

which always contains the most recent week's worth of messages. The

user may retrieve copies of messages from the message file into his

* - pending action queue by submitting a search query to the system. The

items in the message queue may be scanned by displaying the first page

(screenful) of each message. They remain in the message queue until

they are explicitly deleted. Messages and user-created text files may

be edited and otherwise manipulated, stored in the work file belonging

to the user's position (indexed by user-defined categories), and/or sent

to other positions on the system. The system also allows for position-

to-position conversational communication.

In addition to the above, there are special system support

procedures for watch change (i.e., logging on/off a position), profile

construction, message file search-query specification, report

. .generation, file printing, short-term file storage, and user status

reporting.

NIDS makes use of the following set of files and queues:

1. Message queue. A set of messages ordered by precedence set by

the originator, available to a user logged on to one or more

positions. The messages may be scanned sequentially forward

("next") or backward ("previous"), or the user may return to

the first message. As each message is accessed, the first

screenful is displayed and the user may manipulate the entire

message--he may delete it from the message queue, save it in

one of several files, send it to other users, edit it, etc.
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2. Message file. A collection of messages .entered into the system

during the previous six days, with the oldest messages being

purged as additional file space is required. Users may

retrieve copies of messages by submitting search forms

specifying Boolean search criteria on subject matter and other

variables.

3. Work file. A file associated with each position, into which

messages and other items may be stored by user-defined subject

category. Items may be stored under more than one category.

For each position, NIDS maintains an index of subjects and the

date-time group of storage of each item. A user may both store

into (write) and retrieve from (read) work files associated

with the position(s) into which he is logged. A user may only

retrieve copies of items from work files belonging to other

positions. There is also a special work file (called OMNI) for

which all users have both store and retrieve privileges. Items

may be retrieved from work files in several ways:

a. An entire set of items within a subject category may be

retrieved and scanned for items of interest.

b. Items may be retrieved by specifying the storage date-time

group.

c. Items or sets of items may be retrieved by specifying

unions/intersections of subject categories.

.__-'-
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* -Individual items may be scanned page by page, and an entire set

may be scanned sequentially forward or backward. The item

currently displayed is treated as a single unit and may be

printed, deleted from the list of response items, etc. Items

may also be replaced in the work file after editing, or may be

deleted from it.

4. Hold queue. Each position has an associated hold queue into

which current items may be placed when more urgent tasks must

be performed. The hold queue is sequential and may be scanned

forward or backward; it is also possible to jump back to the

first queue entry. Pages of an item in the hold queue may be

scanned sequentially. Items remain in the queue until they are

explicitly deleted.

5. Pending action queue. Each position has a pending action queue

that receives intra-NIDS communications as well as retrievals

from searches of the message file.

6. A file of standard report formats from which the desired format

may be chosen, filled out, and then printed, filed (in the hold

queue or work file), and/or sent to other positions.

A variety of system functions permit the user to manipulate the

contents of the several files and queues. In functional terms, the user

may

1. Log on/off of one or more positions (watch change).

2. Build, store, and modify message search profiles associated

with each owned position.
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3. Scan the message queue and select items of interest.

4. Edit received messages and create original messages and

reports.

5. File/retrieve received messages or original documents in an

index-structured work file.

6. File/retrieve current items in the hold queue.

7. Retrieve copies of recent NIDS messages by constructing and

*; submitting search queries.

8. Communicate with other positions either conversationally or by

message.

Conceptually, the user "owns" a copy of any item (message, report,

etc.) that is the current item displayed on the terminal. If the user

modifies a retrieved item and wishes to preserve the changes, he must

explicitly save it (in a work file or hold queue), print it, or send it.

The user accesses the system through a dual-screen terminal

comprising a typewriter-like keyboard, special function keys, and a

light pen. A portion of one of the screens is generally reserved for

the entry and display of commands, function menus, system messages, and

error messages. The balance of that screen and the entire second screen

are used for text display and editing.

The user may change activities at any time by pressing a special

function key (ENTER COMMAND) and then either typing a command, pressing

another function key, or selecting an item with the light pen. The

desired activity does not take place until another special function key

(EXECUTE COMMAND) is depressed.
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The function keys that are appropriate to a particular context are

lighted when in that context, and a list of possible commands is also

displayed. Certain function keys (e.g., PAGE FORWARD) are utilized in

several contexts, while others (e.g., PUT IN HOLD QUEUE) are single-

purpose.

"F
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III. SECURITY POLICY AND COMPUTING SYSTEMS

The security of sensitive information is affected not only by

physical and technological conditions, but also by legal,

administrative, psychological, institutional, and other considerations.

At root, security depends on trust, which at times may be misplaced--

whether in a machine, a person, a procedure, or an organization. It is

the interplay of all the various human and technical factors that

determines the effective degree of security in any given situation.

Decisions concerning security methods will often involve

complicated tradeoffs among the risk of disclosure of important

information; the utility of the information (to both friend and foe);

the ability of the authorized users to manipulate data conveniently;

system costs for protection mechanisms (measured in dollars, time,

performance penalties, loss of functionality); and a host of other

factors. The following five technical issues interact closely with

policy decisions in affecting the ways secure message systems (and other

applications in secure environments) are designed, built, and used:

1. Granularity. The size of the smallest data unit that can carry

its own security label within the system.

2. Trust. The level of confidence that can be placed in various

elements of a system handling classified materials.

3. Confinement. The ways in which computer processes can be

prevented from using indirect means for leaking protected

information.

4. User interface. The impact of system security features on user

* perceptions and behavior.
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5. Integration. Operation of secure message systems in joint

environments with other related applications software.

GRANULARITY

Granularity refers to the size and status of the smallest objects

that can be individually protected within a computer system. The

objects of interest here are such things as files (at the system level)

and messages (at the application level). There is a good deal of

variation among computing systems in the way these objects are stored

and processed.

A file may contain a single user document, or in some computer

systems, files may contain several documents--or logically distinct

blocks of text--physically packed together and referenced by a single

system file name or pointer. From the user's point of view, such a file

might constitute an entire database or a single report. Conversely, a

user's database might be stored in one file, or in several files,

depending upon the host system.

But a database itself may have a great deal of internal logical

structure, and parts of the database may be more sensitive than other

*- . parts. Even at the level of a single document, different paragraphs of

a classified report often have different security classifications. Some

systems that store messages pack the individual messages together into a

small set of files, while in other systems (Borden, Gaines, and Shapiro,

1979), each message is an individual file. Most sophisticated computer

*systems further allow the aggregation of files into directories.

Obviously, serious problems can arise in attempting to harmonize the
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user's concept of a message, the system's concept of a file, and the

security policy's concept of the appropriate minimal unit for individual

protection.

Let us consider this in somewhat more detail for the case of

military messages. The top-level structure of a message divides the

message into a "header" and a "body." The body is the text of the

message, while the header contains a variety of information about the

message, the sender, the set of recipients, the date and time of sending

and receipt, the precedence of the message, its classification, etc.

Some systems include a good deal of additional information in the header

as well. The body of the message can be anything from a single line to

a lengthy report. The header and the body may be of different

classifications, and individual elements within the header and the body

may themselves carry different classifications. For example, within the

header, the subject may be more highly classified than the other

elements. The header is frequently either unclassified or has a low

classification, while the body may be highly classified. Finally,

different paragraphs within the body of the message may have different

security classifications.

Now the question arises, How should the problem of mixed

classifications be handled within a computer system? One approach is to

store each individually classified element of a message (or other

object) as a separate file within the system. But if this is done, a

potentially complicated indexing structure is needed to relresent the

entire message as a unit within the system.
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Alternatively, messages could be stored in a pair of files, one

containing the bodies of messages and the other containing the headers.

This would allow different classification of headers and bodies, while

maintaining the convenience of security granularity at the file level

(i.e., a single level of classification for any given file). In this

* -scheme, the bodies of all messages would carry the same security

classification, and the headers likewise would all carry a single

classification; for example, all the bodies might be Secret and all the

headers Unclassified. An important advantage of this arrangement is

that certain useful programs which require access only to the headers

would only need access to an Unclassified file. Thus, it would be

posible to build a program that produces a summary of the messages in a

folder, showing the originator, the subject, and the date and time the

message was sent, etc., without requiring access to classified files.

But this simplification of the software may be purchased at the

expense of added problems for the user. A user who wishes to annotate

the header while examining a message body may find that he is not

operating at the appropriate security level. According to the basic,

widely used security model, anything written by a computer program must

be classified at least as highly as the program itself. Thus, if the

user were operating at the Secret level to read the body of a message,

ahis Secret-level program could not modify the header information stored

in an Unclassified file.

Another approach would be to store each message (header and body

together) in one file, which might contain only one message or several

packed messages. Again, this assumes that the security granularity of

-- - - - -
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the system is at the level of the file. This simplifies the message

handling software, because the program that displays the message needs

to read only a single file to obtain the entire message. If the user

wishes to modify the message (by making annotations, for example), he

can make appropriate markings in both the header and the body. However,

this approach entails the "artificial" upgrading of Unclassified headers

to the Secret level, so that they can be stored with the Secret message

bodies. Downgrading will then be required to make the headers available

to lower-level processes. Of course, many alternatives for dealing with

this problem are available to the designer, but no matter which approach

is favored, this set of issues must be confronted.

The level of security granularity affects the complexity of the

system. As we protect smaller and smaller objects, the system must

handle larger and larger numbers of them. As the numbers increase, the

size and complexity of the supporting system (indexes, directories,

-' pointers, etc.) also increase. If user-level objects normally consist

of many pieces, each at a different security level, mechanisms for

dealing with these pieces as a whole will be needed in addition to

mechanisms that allow us to deal with the individual pieces. The system

must be able to efficiently access a number of small, scattered pieces

in quick succession if the granularity is very fine. On the other hand,

if the granularity is too coarse, the system and user may be forced to

operate at a single, high security level, when in fact, pieces of the

object are of lower classification. This raises the problem of

downgrading--removing information of a lower classification from an

object of higher classification.

..........
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The latter case superficially resembles the situation of a person

dealing with written documents. A document is marked with the

classification of the most highly classified information it contains;

pieces of that document may have lower classifications. But in this

case, downgrading is not a problem. The person who wishes to copy an

unclassified paragraph from a classified document may do so because he

has been trusted with the entire document in the first place. However,

a computer program that does the same thing raises concerns about the

correctness of the program, in addition to the intentions of the user

when he uses that program. It is this problem of guaranteeing the

correctness of the program, or arriving at another reason for trusting

the program, that makes this issue difficult. We will return to the

question of trust below.

The user generally finds it simpler to use a system if large

objects having some internal logical coherence can be treated as a

single unit. For many purposes, it is simpler to manipulate a large

text file as if it were all of one classification, even though some

parts of it may be at a lower level. For example, it is easier to copy

large sections of the file into another report of the same

classification. It is also often preferable to treat a message

consisting of a header and a body as a single unit; this is the

appropriate way to forward a message, for example. A fine-grained

secure system might entail frequent, cumbersome changes of security

level. If the user must make such changes frequently while dealing with

what he normally thinks of as a single object, he may seek ways to

defeat the system in order to avoid the annoyance of what he perceives

as wasted effort.
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Here, in a nutshell, is the granularity tradeoff: For many

purposes, coarse granularity leads to simpler design in the supporting

system and in application programs, and to greater user convenience.

However, it is generally more difficult to abstract information of lower

classification from an object of higher classification in a coarse-

grained system. And it may be difficult to provide supporting software

that can be trusted to help with this task. These points will be

elaborated below, and examples of this tradeoff will arise in the

discussion of particular approaches to message system design.

TRUST

At the root of any security system is some sort of trust. The

trust can be based on confidence in an individual, validity based on

inference, knowledge of the context in which something was designed or

is being used, and a number of other factors. Computer programs are

notoriously difficult to make error-free. In addition, computer

operating systems, which are very large computer programs, have been

shown to have many security flaws even when unusual precautions have

been taken in their design and implementation. In recent years

considerable effort has been devoted to the development of techniques by

which the security properties of computer operating systems can be

formally specified and verified. This has been a major motivation for

the growing area of computer program verification. But formal

verification methods cannot be depended upon to answer all issues of

computer security (DeMillo et al., 1979).
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One of the major obstacles is complexity; it is especially

difficult to verify large computer programs. As a result, a substantial

effort has been under way for the last several years to produce

operating systems in which a "kernel," or a small part of the operating

system upon which the rest depends, can be isolated and formally

verified. This is the approach taken with the KSOS (McCauley et al.,

1979) operating system--a system which functionally resembles UNIX, but

which was built from scratch to be secure. Even with development of

automated verification systems, verification is a reliable source of

trust for only a small fraction of the code that is really relevant to

security in a large computer system. This implies the need to justify

confidence in a collection of programs that comprise the computer system

being used, even when all those programs cannot be verified.

*" One basis for confidence in a computer program is confidence in the

person who wrote it. But for certain kinds of code, this won't suffice.

The problem is not that the designer or coder of the program is

untrustworthy from a security point of view; it is simply that the

possibility of error is so prevalent in computer software that one

"" cannot rule out inadvertent security flaws. For operating systems that

must operate absolutely correctly in order to guarantee appropriate

'  access protections for stored data, simply trusting the good intentions

of the programmer will not do.

Under other circumstances, this kind of people-based trust may be

quite sufficient. For example, a text editor must access the files in

the system that are to be edited and provide a set of editing functions

that allow the user to manipulate the text. For simplicity, we may

0"

*L *" . .
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assume that the interactions of the text editor with the system consist

*. mainly of opening a file, using the data read from that file as a basis

for generating a new file during an editing session, and writing that

new file when the editing session terminates. In addition, during the

course of editing, the text editor must transfer data to a terminal to

be displayed to the user and receive the keystrokes that the user types

as he proceeds with his editing. These interactions with the operating

system are quite straightforward.

Editing programs, like other complex programs, can be expected to

have bugs in them. However, most of these bugs will affect text editing

performance but not security-related performance. For a text editor to

make an error from a security point of view (with one exception

discussed below), it must somehow gain access to a file that the user is

not authorized to access. But the underlying operating system is

designed and certified to prevent this. Hence, any failure on the part

of the editor to perform correctly will be a performance failure but not

a security failure.

The one exception to this is the case where security markings are

present in the file being edited--a situation that can arise when the

security granule, in systems terms, is finer than the file. Typically,

in classified documents, each paragraph carries a symbol indicating the

security sensitivity of that paragraph--a (U), (C), (S), or (TS) at the

beginning of the paragraph indicates that the paragraph is Unclassified,

Confidential, Secret, or Top Secret. A security error can occur in the

cext editor if these security designations are deleted or modified. If

we do not trust the programmer who writes the text editor, we might

-
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suspect him of deliberately constructing the editor so that it changes

some of the security markings. For instance, it might occasionally

change a (TS) to a (U). Then, at a later time, highly classified

paragraphs could be moved into an Unclassified file because the internal

designation was no longer correct and misled either a program or a human

being who used the file.

It is highly unlikely that this kind of change could occur by

accident. An accidental modification of a line of text by a text editor

is unlikely to produce an exploitable result. The security designation

and other parts of the line may be deleted or modified in some way that

is not helpful, but the particular modification that changes the legal

security label into another, lower, legal security label is very

unlikely to be an accidental error.

An important aspect of security is detection. We not only try to

prevent unauthorized violations of security by means of access controls

on the use of files, we also count heavily on surveillance and detection

to deter potential security violators. The performance of a text editor

is highly observable. Every user can observe what the text editor does

to the files that he edits. Therefore, deliberate program-based

modification of such designations must be done in such a way as to

escape detection by the user. But the output of text editors is

inspected in great detail, and it is highly unlikely that even an

occasional modification of a security designation could go undetected

for long. Thus, in addition to the trustworthiness of the programmer,

we can count on the deterrent value of highly probable detection for

assurance that use of a text editor will not compromise security.

, -------- t -,, - - . - - -
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This suggests that we can justify a higher degree of confidence in

the security properties of at least some applications programs, without

the more rigorous (and costly) approach of formal verification. As a

policy matter, it is important to distinguish applications where

expensive methods such as formal verification are required to achieve an

adequate level of security from those where such assurance can be

achieved by less expensive methods.

CONFINEMENT

The "confinement problem" (Lampson, 1973; Lipner, 1975) refers to a

class of security flaws in computer systems that may pose special

problems for multilevel secure message systems. These flaws involve the

leakage of information through indirect channels we define here by

exclusion: They are not the normal ways by which programs output

information. Rather than writing information into a file or to a

terminal, the program causes changes in some variable which is

observable by others, but which is not intended to be a communications

path. For example, a subversive program may create empty files in a

directory so that someone (or perhaps another subversive program) can

later check to see how many empty files there are. Thus, this becomes a

signaling path by which a prcgram could communicate illicitly to someone

whom the security mechanisms of the system would prevent from reading

files written in the normal manner. This problem is potentially

serious; an experiment was conducted in which a terminal was driven at a

high data rate by a program that watched a directory as another program

manipulated it. Lampson discusses the technical aspects of this problem
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in some detail. Here, we focus on the policy considerations it

involves. As will be seen, much of the above discussion of trust is

applicable here.

Communication requires a sender, a receiver, and a channel. Those

who worry about confinement have identified a large numfiber of potential

communication channels in computer systems. These include such system

data as the number of files in a directory, the length of a file, etc.

Effort and coordination are required on the part of both the sender and

the receiver to use such a channel. Furthermore, for most confinement

channels, the sender and receiver (or their programs) must be active at

the same time, and both must engage in fairly substantial activities to

exploit the potential confinement flaws. Finally, while the data rate

of some of these confinement channels may be fairly high under rare and

special circumstances, the rate of change of the signaling variables may

be quite low during normal use of the system.

These factors may permit ample opportunity to observe either the

sender or the receiver in guilty behavior. In contrast, for many

operating system penetrations, there is little or no opportunity to

observer the penetrator; he can often do his work in preparation for the

penetration entirely unobserved and then run a program that is active

for only a brief instant within the system to actually accomplish the

penetration. The use of confinement channels exposes the perpetrators

to a far more significant risk of detection.

A program that exploits a confinement channel can only have been

written by someone who wishes to defeat the system. Thus, one rather

direct way to avoid this problem is to trust only programs written by

0¢
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people who can be trusted. This means that sensitive information cannot

be handled by utility programs whose source is unknown or unverified.

This policy may eliminate a lot of useful applications software or cause

it to be rewritten, but it is clearly less expensive than formal

verification of such code would be. Short of employing trusted people

to produce all code that will handle sensitive information, it may be

deemed sufficient to carefully examine such code. The kinds of system

variables that can be observed are not particularly easy to manipulate

and may not easily escape notice if a program is rigorously scrutinized.

One might worry about accidental coafinement violations that a would-be

- . penetrator might discover, such as the accidental but noticeable change

of system variables which correlates with the contents of one or more

protected files. It is difficult to imagine exploitable flaws of this

type; such situations seem highly unlikely to arise in practice.

What is the likelihood that a program will be deliberately designed

to communicate by violating confinement? Such a program would probably

require a fairly large amount of computing time to achieve a useful data

rate over a confinement channel (except in the case where a very small

amount of leaked data would constitute a serious security problem--

probably a very rare circumstance). The program must do this in a way

that escapes notice. But program running time is often a matter of

concern, and the overhead for such actions as creating and deleting many

files is substantial in most systems as well. Thus, this aspect may

make a program that violates confinement relatively open to detection,

with the consequent risk of detection of the person who supplied the

program.

'I - " - " ' , " " , " " " . , " ° " , " " , i _ - _ . " _ . . . -n ,. , , , ' . ,
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This Note introduces a number of different design possibilities for

message systems. The ones that offer the greatest convenience to the

user or that are technologically least costly to implement generally

appear to offer the most plausible opportunities for a penetrator to

exploit the confinement channel. But a careful assessment of the actual

risks that would be incurred should be carried out before these

otherwise more attractive approaches are rejected. Little work has yet

been done on the feasibility of monitoring for confinement violations,

beyond simply trying to prevent the channels from existing in the first

place. It is not out of the question that for many known confinement

channels, reasonable monitors will be much cheaper than actually

blocking the channel, and may lead to systems as secure as they would be

if no such channel were present. The question of monitoring confinement

channels is not examined in this study, but it merits attention.

USER INTERFACE AND CAPABILITIES

We now consider the kind of user interface that is desirable for a

multilevel secure message system. Should the user be continuously

informed of the security level of the data he is dealing with? When he

attempts to access a piece of data that he has been allowed to see

before and that is at a security level different from that of the

current data, should he be asked to verify that he has requested a

change in security level?

Such questions, and others concerning the appearance of a

multilevel secure system to the user, involve a tradeoff between

convenience and utility on the one hand, and the need to insure that

classified material is dealt with in a secure fashion on the other.

- - . . . , , . .. . - - . , . -
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Today's computers are not smart about people's intentions and

cannot generally recognize whether a particular act is valid, if the

same act could sometimes be a violation of security. People have the

ability to mix information of different classifications in their heads

and so can have access to high-level material when, for example, they

are preparing a document of low security classification. But the policy

rule that forbids programs to write files of lower classification than

the highest level to which they have access is fundamental to the design

of secure systems (Ware, 1979). Should the writing of lower-level files

be permitted when the user verifies that it is intentional, on the

grounds that the user was trusted if he was given access to data of

higher classification in the first place? To what degree should such

copying of data across security levels be made convenient, and how

likely is it that such convenience would lead to accidental violations

of security? To a large extent, such questions can be answered only

through experience gained from the actual use of multilevel secure

systems.

The user's interface to security downgrading capabilities may

constitute a major policy problem. Today, systems are being explicitly

designed to prevent downgrading, so that they will be safe from

exploitation. But a downgrading capability is absolutely necessary at

times. The difficulty is in knowing when it should be permitted and how

it should be controlled. It has been suggested that every piece of

information copied to lower levels should be displayed on a terminal for

the user's review, so that he can verify and acknowledge the correctness
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of the downgrading. But in many situations this could be onerous indeed

and might undermine the utility of the system. The appropriate answer

is not yet clear, and it probably will vary from situation to situation.

Some specific cases that arise in the design of secure message systems

will be mentioned subsequently.

.: INTEGRATION

*; Designers of secure message systems need to remember that a message

system is only one of several user tools and that it must be skillfully

integrated with other capabilities. As computer use becomes

increasingly interactive, both the source and the destination of much of

the information that is transmitted by messages will lie outside the

*. message system. In a tactical command and control environment, for

example, much of the information in messages relates to forces used in

combat; the data often come from one database and are used to modify or

update another database. If the user is forced to copy information

manually from a message because it cannot be used directly to update

information stored in the computer, the system is not assisting him to

the degree that it could. If the basic capabilities of the message

system itself are not integrated with convenient means for manipulating

text and other data (database management, word processing, etc.), the

user will often not obtain full advantage from the system.

Message systems were initially designed almost exclusively to send

messages from one person to another. This explains why so many message

systems have been built with little or no concern for integration with

the rest of the computational capabilities that may exist in the host
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systems. Certainly, the rapid delivery of text messages, typed by hand

and intended only to be read by humans, is an extremely important

capability. The speed and convenience provided by computer-based

message systems are substantial advantages, even when the systems are

used only in the human-to-human mode. But the utility of these systems

is far greater when they are integrated with other automated information

processing functions.

Information received by message can be expected to be used for

briefings, for updating intelligence and logistics data, for assisting

in management and direction of operations, and for planning. It must

therefore be possible to quickly move relevant information from messages

into other forms for computer processing. Similarly, it will be

increasingly necessary to obtain information for inclusion in messages

from files of various kinds within a computer system. The integration

of message systems with other computer information processing will take

time and effort, but it cannot and should not be avoided. The

development of stand-alone message systems that are disjoint from other

systems or totally segregated within a single larger system is

anachronistic and counterproductive.

The integration of message systems with other systems has security

implications. The availability of a convenient method for sending out

messages containing information from files increases the risk that data

stored in a computer system will go where they should not go. The

. security policies for the message system and the means of implementing

them must be consistent with those governing the rest of the system. It

will do relatively little good to segregate paragraphs of a message by

I..........



-32-

security level if the processing of that message by other software in

*the system requires the entire message to be treated at a single level

* of classification. Hence, the designer of a multilevel secure message

system must take into account the security capabilities and requirements

of both the host operating system and the companion applications that

will run on that system.

I"
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I.

IV. APPROACHES TO THE IMPLEMENTATION OF SECURE MESSAGE SYSTEMS

This section presents a number of different approaches to the

design of message systems in multilevel secure host environments. Each

approach has its characteristic strengths and weaknesses. First, we

outline a simple taxonomy of system properties that characterize and

distinguish the various approaches. Next, we present a set of

generalized (and quite familiar) evaluation criteria by which these

strengths and weaknesses can be loosely compared. The choices in actual

implementations will depend upon the missions and resources of the

intended user community.

A TAXONOMY OF DESIGN APPROACHES

The design approaches outlined in this section differ from one

another along two dimensions:

1. The degree to which the system supports user-level objects of

mixed security classification.

2. The degree to which the system assists the user in overcoming

the inconvenience of the strict system-level separation of

materials at different levels of security classification.

Along the first dimension, four classes of systems are considered:

1. Complete isolation of security levels: single-level messages;

single-level folders; message processing at only a single

security level at any one time.

2. Multilevel folders of single-level messages, enabling the

processing of groups of messages at various levels at one time
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(e.g., sequentially reading and deleting messages of different

security classification levels).

3. Separation of messages into header and body, at different

security levels.

4. Multilevel messages, marked by paragraph or word.

Along the second dimension, six distinct technical design

approaches are reviewed:

1. Strict adherence to the secure host's security model, with no

additions to the basic message system and no modifications to

the host operating system. All processing is done within the

security model.

2. Manual upgrade and downgrade. The user upgrades and downgrades

messages at his discretion, and system security relies on his

attention and judgment.

3. Upgrade with protected markings, automatic downgrade. A

special trusted mechanism puts its own markings on data and

downgrades automatically.

4. Protected context file with pointers to data at multiple

levels. The data themselves are protected by KSOS; the

pointers allow process and control information to flow between

levels.

5. Secure message system server (similar to the KSOS secure

server). The server switches processes automatically,

depending upon the security level of the data being accessed.
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6. Trusted code. The entire message system is built with trusted

code and can violate the host system's security model in any

way in the pursuit of functionality.

Figure 1 presents a convenient guide to the subsequent discussion

of message system designs based on this taxonomy. A number of key

design features are incorporated in the various systems for enhanced

functionality and convenience. These features are described here as

they would be implemented in UNIX and KSOS, but similar features could

be implemented in any multilevel secure system.

The first feature is a mechanism to simplify changing security

levels. In KSOS the user changes levels by asking the secure server to

switch his terminal to a different process of the desired level (an

individual process cannot change its own level). Thus, all of our

designs require a mechanism for changing to another level with a minimum

of user effort. Many times, the level that the user wants can be

straightforwardly deduced by the previous process. This suggests a

mechanism by which a process might store a target-level specification in

a buffer in the secure server; the user could change to the new level by

simply confirming it. Such a feature would be most useful in situations

where the user must change levels often to continue processing on the

next logical data item. A process switching feature adds only a minimal

cost to the server (the cost of verifying the additional mechanism). It

does not violate the security model and thus creates no additional

security problems.

, . ..
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Several of the designs presented below use the read-up property

of the security model to allow a user to peruse messages of lower

levels from a high-level process. A slight deviation from the

security model would allow a useful adjunct to this capability: the

ability to delete lower-level messages when a user has finished reading

them. The DEL ("delete file") command has a limited potential for this.

It requires a limited confinement channel that allows the user to delete

files of any lower level while the bandwidth of the DEL command is

limited in various standard ways with a monitor. For instance, a

specialized DEL for removing messages could be constructed. This

command would be invoked by a process taking its input from a terminal,

would have a time delay to limit its bandwidth, and would be protected

against modification. At run time, the specialized DEL command would

run more slowly, but it could be superseded by a normal DEL command in

cases that do not violate the security model. The necessary monitored

confinement channel, which would have to be evaluated as a potential

security risk, and the development of the confinement channel monitor

would, of course, add to the costs of the system.

Many of the proposed designs include a downgrading program--a piece

of trusted software that allows a user to downgrade information from one

file to another and assume responsibility for the downgrading. The

downgrader in turn reports to the security officer (through an audit

trail) what information was downgraded, when, and by whom. The common

assumptions about such a facility are

1. It will not be used so often that it will swamp the security

officer with audit information.



-38-

2. The user will have to interactively confirm each piece of

information to be downgraded (he will have to be presented with

each paragraph and be required to execute a keyboard

confirmation) to reduce chances of unintentional downgrading.

3. The downgrading operation will take a sufficient amount of the

user s time to discourage its casual use.

The downgrader itself implies no additional security risk to the

system. A malicious user can always write the information down on a

piece of paper and retype or copy it as he wishes.

Finally, some of the designs rely upon creating secure subsystems

within the secure operating system. A secure subsystem is defined

as a set of programs and data files that have their own built-in

security checks and enforce their own security policy, above and

independent of the operating system's security policy. Of course, the

subsystem's security must rely upon the host operating system's

security. When the subsystem writes a file that it wishes to protect,

the operating system must recognize the subsystem's access lock and

respect it. A typical technique is to create a set of objects (e.g.,

files) that can be accessed only by a particular set of programs. These

programs must then be trusted. Two special trusted programs must be

used to enter new objects into the subsystem and to release objects back

to the operating system's protection.

KSOS provides a method for creating such secure subsystems, through

its subtype manager. Files can be designated to be of a special type

called a subtype; only processes having a special subtype capability can

access them. Normal processes can invoke protected processes, but these
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processes are then protected from further manipulation by the calling

process. The invoked subtype process can then access the subtype-

protected files.

With such a technique, a system designer can create an entire

secure subsystem within the host secure operating system. This

subsystem can then be used to implement limited confinement channels or

special security policies that violate the security model or its KSOS

implementation. For example, a set of normal files of several security

levels can be mapped into a single file in a special representation by a

secure 7ubsystem process and stored as a single file in the operating

system. This file can then be read by untrusted applications software.

When the file is to be modified, it can be remapped into separate files

and removed from the secure subsystem. Security in the subsystem then

relies solely upon the two mapping mechanisms.

EVALUATION CRITERIA

Several kinds of value must be considered in assessing the fitness

of different designs for particular message system applications in

multilevel secure environments. In actual practice, the criteria listed

below will need to be supplemented by others related to the particular

circumstances of individual cases. The lack of common measures among

the different sets of criteria may require difficult tradeoffs in making

decisions about system procurement. The basic evaluation criteria

include

1. Functionality, or the range and convenience of the functions

provided by the system. All of the design approaches discussed

~. - -
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below provide the basic functions required in useful message

systems (reading, composing, saving messages, etc.). Over and

above these, some designs incorporate additional important

conveniences, such as

a. The ability to easily process streams and collections of

messages of mixed classification.

b. Automated assistance in message downgrading.

c. Convenient whole-message operations (e.g., forwarding,

deletion, filing) on mixed-level messages.

2. Ease of use (human-engineering factors). For multilevel secure

environments, two particular factors emerge:

a. How much additional typing/interaction must the user do

(over that required on an equivalent system with single-

level security)?

b. Is the user likely to understand exactly what his security

responsibilities are at all times?

3. Level of trust, or how characteristics of the design affect the

cost and feasibility of code verification (and/or other

measures) needed to certify the systems as trustworthy or

secure:

. a. Is there a standard certification method, e.g., verifying

the design and implementing code?

b. Is the design simple, e.g., are all of the security

violations contained in a partitioned "kernel" of system

calls?
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c. How grave are the threats to which the system is

I' potentially vulnerable?

d. What is the potential cost of a security breach?

4. Cost/time/efficiency. There are several factors that are

unique to multilevel secure environments:

a. Software development cost and time. Verified or otherwise

secure-certified software takes significantly longer to

develop and costs more.

b. Secure storage cost. Highly classified data require more

stringent and therefore costlier security procedures for

storage device management. Thus, it is important to

minimize the security level of stored data.

c. Scaling up. Designs that are viable for small data files

and limited numbers of users must be tested for viability

in large applications.

d. Storage cost vs. time cost. Most designs trade off

excessive process switching against more complex data

structures.

OVERVIEW OF DESIGN ALTERNATIVES

We shall now describe several feasible approaches to the

implementation of message systems in multilevel secure host

environments. These approaches are based upon the taxonomy of methods

and features described at the beginning of this section, and they are

evaluated against the criteria outlined above.
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1. Strict Isolation of Security Levels

In the first category of design alternatives, processing of data at

one security level is completely isolated from processing at all other

levels. Thus, in message systems, all messages have a single security

level, all folders have a single security level, and only messages of a

single security level may be processed at any one time. This represents

the default (least-effort) approach for message systems in a KSOS-like

environment, since the message system applicationts software strictly

conforms to the security model implemented in the host environment:

Processes may read and write data only at their own security level.

Design 1.1 : Untrusted software that strictly conforms to

the security model of the host operating syzitem.

This category of designs is exemplified by the Secure Message

Handler (SMH), developed at Rand to run on the KSOS operating system.

SMH is an adaptation of MH, a system developed at Rand to run under

UNIX, taking full advantage of the flexibility of the UNIX file and

directory system.

MH has three definitive design characteristics:

1. Each message is stored as a UNIX file, one file per

message.

d 2. Each folder is stored as a UNIX subdirectory of files.

3. Each MH command is a separate program invoked via the UNIX

command interpreter (shell). Thus, MH commands can be

Design numbers reflect the class and design approach in the
taxonomy given on pp. 33-35. Thus, Design 1.1 represents system class
I and technical design approach 1.
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invoked in any system-level context and can be used as

filters in pipelines with other programs. A dedicated

context file and a set of user profiles keep track of the

relevant context from one command to the next.

MH has a flexible set of fairly standard message handling commands

to scan message headers; display messages; delete messages; compose

messages; create, delete, and access folders and file messages in them;

and select messages based on their contents, origin, date, etc. Each MH

command runs a separate program, potentially reading and updating the

context file.

The major difference between SMH and MH is the separation of

message storage by security level. In SMH, each set of messages and

folders of a particular level is stored in a separate directory of that

level. Whenever the user wants to process messages of a given level, he

must start up a process at that level, via the KSOS secure server. Each

SMH command, on invocation, notices the security level, reads the

context file for that level (which includes pointers to a directory of

all folders of that level), and processes messages only from that level.

One typical consequence of the strict separation of levels is that the

user can fetch incoming mail from only one level, thus potentially

receiving only a subset of his incoming mail; later retrievals at a

different level may therefore include messages that actually arrived at

the site earlier.

SMH embodies two features that are anomalous with respect to the

KSOS security model and that require secure code in the application

domain:
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1. Notification of all incoming mail, regardless of security

level, at the time it is received by the system.

2. A downgrading facility for moving overclassified materials

from one message to another, lower-level message or file.

Functionality. Obviously, multilevel messages are impossible to

represent in a system of this type. Messages containing data at

different levels must be classified with the highest level of data they

contain. Folders with messages of multiple levels cannot be

accommodated. Finally, users must utilize the downgrader to move low-

sensitivity data from a message that also contains high-sensitivity data

to a lower-level file.

Ease of Use. Design 1.1 requires either that all messages on a

particular topic be at the same security level, or that the user

personally keep track of topic relations across levels, e.g., with

mnemonics. Users may in fact tend to upgrade related messages to the

level of the highest-level messages in the set, thus substantially

raising the burden of subsequent downgrading. The security model,

however, and the user's responsibilities for working within it are

completely clear and understandable. User interaction cost will tend to

be high, depending upon how much level-switching and bookkeeping between

levels is required.

Trust. Except for the anomalies mentioned, trust is system-high,

i.e., as high as the underlying operating system that enforces the

security model. All other applications software can be totally

untrusted.

.F.,
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Cost. Design 1.1 entails minimal additional cost for applications

software, mostly for extra system code to retrieve and keep track of the

current security level, and for the downgrader.

For situations where strict separation of security levels is to be

maintained, this design is quite adequate, almost by definition.

2. Multilevel Processing of Single-Level Messages

The second category of designs takes advantage of a limited mixing

of security levels for greater functionality and ease of use. Here, it

is assumed that each message has a single security classification which

applies to the entire message; in limited ways, messages of different

levels may be grouped for storage and processing. The category includes

five design alternatives, each of which allows multilevel folders-of

single-level messages and manipulates sets of messages at various levels

without switching process levels (e.g., reading or deleting messages of

different levels from the same process). The most important functional

benefit is that the user can easily process streams of messages (e.g.,

incoming mail, or sequences of messages in a folder).

It is explicitly assumed that the operating system security

capabilities will be used to protect each data file at its particular

level (i.e., Secret messages will be stored in files whose security

level is Secret, etc.). A multilevel folder must somehow "contain"

(point to) these messages and thus allow the user to associate a logical

name with the message collection. The problem, then, is to construct a

message system in which the user can read and write messages stored at
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various levels in these collections. In KSOS, one implementation of a

multilevel folder would entail a set of subdirectories of a main folder

directory. The subdirectories would each have a different security

level and would contain all and only the messages in the folder at that

level. Special secure software is necessary to move folders, because

directories of different levels must be read and rewritten.

Design 2.2: Manual upgrade and downgrade.

The basic strategy in this design is to manually upgrade all

information to be processed to the highest level of any included subset,

process it, and then manually downgrade the pieces back to appropriate

levels. Both upgrading and downgrading are under the user's control and

responsibility. System security relies upon his attention and judgment.

Specifically, this design entails upgrading all messages in a

particular folder to the security level of the most highly classified

included message (in practice, often the highest level that the user may

[ plan to access), processing the messages, and downgrading any remaining

messages to their appropriate levels.

The upgrading program must tag the messages with their original

level or must provide some other form of bookkeeping to aid the user in

reclassifying the messages. This bookkeeping aid will not be protected

in any way; thus, malicious programs could rewrite information at this

level. The user is responsible for downgrading and checking to make

sure the data are reclassified to the correct level. Some additional

processing at each level may be required to return the messages to their

proper file locations (e.g., their original folders). This design

|.'.
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requires no trusted processes (beyond the downgrader) and is probably

most viable for situations in which the processing consists of reading

K' new mail and most messages are discarded rather than being reclassified.

Functionality. Design 2.2 gives the user enhanced functionality

over Design 1.1 if the convenience afforded the user by performing

operations on a set of messages of differing security levels is greater

than the effort required to downgrade and relocate messages to their

proper levels. This design does allow message system operations on

sets of messages of differing intrinsic security levels. However, the

user cannot in general manipulate the messages with other applications

software before reclassifying them, since he must keep track of the

.1 necessary security markings.

Ease of Use. The user must constantly upgrade and downgrade. If

the downgrader is strictly manual, as described above, this could be

very cumbersome. The user s security responsibilities are relatively

easy to understand, but they are great and frequent.

Trust. This design puts a heavy responsibility on the user to

downgrade messages correctly. The messages may be varied and presented

in a random order, potentially causing confusion. This is a situation

in which the "anonymity" of the CRT display could be detrimental, from a

security perspective.

Cost. In operation, many files will be upgraded to the highest

security level. If the security procedu .- for file storage of this

level are costly and the inconvenlence of manual downgrading encourages

widespread overclassification, the excess high-level files may add

significantly to the system operation cost.



-48-

Design 2.3: Upgrade with protected markings, automatic
downgrade.

The strategy in this design is similar to that for Design 2.2;

the user upgrades, processes, and then downgrades a particular set of

messages. The difference is that in Design 2.3 a secure subsystem is

responsible for protecting the markings of the original level. Because

the markings are protected, the secure subsystem can also take

responsibility for downgrading. The secure subsystem itself would be

protected by the operating system security system; this is the function

performed by the subtype manager in KSOS.

This system is used in the following way. The user invokes a

special upgrader from the highest security level he needs. The upgrader

upgrades all the specified messages (files) of a selected group (e.g.,

all incoming mail), marking their original levels (and, optionally,

other information such as their locations), and enters them into the

secure subsystem, using a special discretionary marking. Typically, the

markings designating the original level are entered into the file, and

the entire file is put into a special format. The user then invokes

whatever message system commands he wishes to process the messages.

Each of these commands can access messages only through a secure

subsystem routine which recognizes the special format and protects the

security labels from alteration. When the user finishes processing the

messages, he invokes a special downgrader that accesses the messages

through another secure subsystem routine and automatically (i.e.,

without user intervention) reclassifies them, putting them back into

their original format.
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Security in this design is dependent upon a trusted set of

verified subsystem routines that provide the sole access to the special

format files (e.g., using the KSOS subtype manager). Applications

software then can either move the file in toto or call the trusted

routines to modify the file internally. For single-level messages,

these routines may be fairly simple, consisting of a marker and

upgrader, a reader, and a regrader. Employing these routines, message

system application programs may contain commands to show and delete

messages, scan headers, file and retrieve messages, etc. However, any

operation that modifies messages or adds new information, such as

composing a message or forwarding a message with annotations, requires

either (a) that the user change levels and process the (new or changed)

message at its appropriate level, or (b) that additional trusted

subsystem routines be implemented to take a new piece of text, enter it

into the secure subsystem at a level determined by the user, then append

the new text onto a similarly marked message.

In this design, there is a question as to when to reclassify

(downgrade) the marked messages. It would be inefficient to make the

user reclassify all the messages in a folder each time he runs the

message system. On the other hand, it may be costly to keep a

substantial set of messages overclassified. One alternative is to have

several upgrading strategies, applicable to various common situations

and message sets (such as all incoming mail, or all folders for a

particular project, etc).

The security policy heavily constrains the bookkeeping required for

storing and retrieving messages in folders when upgrading and
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reclassifying. The simplest method, albeit not the most efficient, is

to create a separate mapping file with a map of message to folder. This

map must be updated for most message system commands. It can be

separate from the security level map and thus need not be trusted

(although the data's integrity may be affected). Another alternative is

to include this map in the secure subsystem, making it sufficiently

trusted that message system commands at all levels could access and

!update it.

Because the marked messages are protected by the special secure

subsystem, the user cannot access them with normal applications

software. The user may of course read the messages, using the

appropriate message system command, and create a file with the message

that does not belong to the special subsystem (such a file would, of

course, be protected by the host secure operating system). At that

point, the message cannot be automatically reclassified and stored at

the appropriate level with message system commands. The user will need

to limit this type of access or risk creating an excess of

overclassified files.

Functionality. Design 2.3 provides the same functionality as

Design 2.2: The user can apply some processes (those that do not

modify or create messages) to messages of several security levels at

once, with the added benefit that the secure subsystem is responsible

for reclassifying the messages. The user can manipulate multilevel

folders and multilevel streams of incoming messages.

Ease of Use. As with the previous design, the user must tell the

system when to move messages to a higher level for processing, and he
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must be somewhat selective to avoid upgrading too many messages. In

addition, the user may become confused as to whether a particular

message (or file) is actually Top Secret, or is only temporarily stored

as such to be later automatically downgraded by the secure subsystem.

Trust. This design violates the security model. It postulates

an entire trusted security subsystem within the secure operating system,

adding complexity to the system's security. The marking and

reclassifying system has to be trusted, although the subsequent

applications software does not, because it is not allowed to process the

message directly.

Cost. Again, this design can store an excess of data at

artificially high levels. Development costs include verifying the

marking and regrading mechanisms.

Design 2.4: Protected context file.

When a user is processing a stream of messages at different

security levels (e.g., his incoming mail), two key problems often recur:

1. In switching levels for a succeeding message (using the

secure server), the user must deduce the appropriate next

level, either noting that level from information supplied

by the message system or searching for the level name in a

message file.

2. The user must keep track of the context of the message or

folder he was processing and reestablish that context in

the new level.
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This design attempts to deal with these problems using a context

file that is accessible to processes at all security levels. It assumes

that the user will handle each message by manually switching to a

process of the appropriate level, but that the context of his actions

will be available to the message system at the new level. Included in

the context file are pointers to the current folder, the current message

within that folder, and locations and levels of all folders. Thus, the

*! user can read a message, switch to the level of the next message, and

invoke a "next" command to read the next message in that stream (either

from a folder or incoming messages). This design also assumes that

processes can aid the user in switching levels by loading a buffer in

the secure server with the right level name. Thus, the context file

informs the user (and the secure server) which level to switch to and

informs the message system processes at that level which message or

folder to process.

Of course, a context file that all security levels can read and

write violates the security model. Thus, this design depends upon a

set of trusted routines to modify the context file, all of which are

protected by a host system subtype manager. The modifications are

further limited to certain types, e.g., choosing another already

existing folder to become the current folder. The security level of the

file itself is the lowest on the system, so that processes at any level

can use it. Modifications to the file must be made through a protected

routine, however. Because the file represents a confinement channel, it

must be limited through the use of standard bandwidth-limiting

techniques such as a long (e.g., 1-second) delay between invocations and

a monitor to detect overuse by a single user.

I°
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The message system needs a mechanism to start up the right process

after the user has switched security levels. Thus, when the user

invokes a command, e.g., to read the next message in a message stream,

and the security level of the next message is different, the message

system can preload the secure server with the appropriate security

level. In addition, the message system stores the "next" command in the

context file. After the user changes levels, either he must start up

the message system or it must automatically search for access to the

terminal. In either case, the message system reads the command from the

context file and invokes it.

There are a few special considerations with this design. Because

the context file is unclassified, any logical names included in it, such

as folder names, should be predefined (and unclassified), or some other

means must be found to avoid passing classified information in the form

of logical names to the context file. The context file itself is

protected by the secure subsystem and therefore requires a special

editor to modify it. If the applications software of the message system

is not to be certified and trusted, the bandwidth of information to the

context file must be limited and monitored; only certain changes will be

legal, and only at a certain rate of change.

Functionality. The user can process a stream of messages as if

they were of one level, except for having to press two or three

keystrokes to switch levels with the secure server between some

messages.
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Ease of Use. Design 2.4 requires the user to change levels more

often than do the previous designs. But changing levels involves a

minimum of keystrokes (two or three)", and the user is spared the

cognitive trauma of constant, substantial interruptions. The security

model is easy to understand, since the user's major operations (e.g.,

processing any one message) are within the operating system's security

model.

Trust. The routines to modify the context file in this design

violate the security model and must be verified. The amount of

additional exposure is monitored and controlled by a confinement-channel

monitor watching modifications to the context file. There is some

question as to whether making level switching almost effortless

jeopardizes the overall security of the system. The user may become

* - cavalier about switching to levels with highly sensitive data, but this

* . can be alleviated by making him aware (e.g., with colored lights or

messages) of his current process level. Regardless of the user's

awareness of the current security level, any information he creates will

be protected at that level; the danger is that the user may forget that

he has moved to a low classification level and then create messages (and

other files) containing highly classified data.

Cost. Verifying the routines that modify the context file adds

significantly to the development cost. Run time cost should be only

slightly greater.
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Design 2.5: Secure message system server.

This design postulates a message system server, similar to the

KSOS secure server, that is able to start up processes at arbitrary

levels and connect the user's terminal directly to these processes.

This design is similar to Design 2.4 in that the user has a process

at the same security level as the message he is handling, and he

switches to a different-level process for messages of a different level.

It differs in that the server itself automatically maintains the context

file and interprets the message system commands to derive updates to

that file. For example, if the user has just read a message at the

Unclassified level and invokes a command to read the next message, which

is at the Secret level, the server notes that the next message is

Secret, starts (or restarts) a message-reading process at the Secret

level, and points to the message of interest. It also updates the

context file. Some sort of user confirmation may be advisable when the

new level is different from the previous one.

Obviously, such a message system server must be verified. But this

constitutes only a subset of the entire message system, the rest of

which need not be verified. Only the processing necessary to maintain

the context file and deduce the next target level are done in the

server--the rest of the message processing is done in the individual

(untrusted) processes invoked. Thus, the security of the system is

greater than that of Design 2.6 below (all trusted code), and the

development cost is substantially lower.

Functionality. The user can process a stream of messages, with the

secure message system server automatically switching security levels for him.

. . . . . . .. . . . . . . - - -]
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Ease of Use. Extensive switching from level to level may distract

the user with level-notification messages. The server contrbls the

-: level changes for him, assuming his direct responsibility for level

control. This may tend to reduce the user's awareness of the actual

level, however, and may induce violations through carelessness.

Trust. This design violates the security model and violates the

KSOS design of having only one server.

Cost. The secure message system server must be developed and

verified. Further, the consequences of a multiserver design for the

host operating system (e.g., KSOS) must be evaluated.

Design 2.6: Trusted code.

In a sense, this design is at the opposite extreme from Design 1.1:

In that design, no (applications) code was trusted, whereas here all

code must be trusted. The applications software is privileged to

violate the underlying security model in any way. The user logs in at

the highest level of data that he wishes to access and then starts the

(trusted) message system. The trusted code is responsible for keeping

the user informed and aware of the security level and the effects of his

operations (e.g., downgrading). The trusted code can be accessed only

through a secure server, to preclude the introduction of subversive code

that mimics the trusted code. The host operating system's security

features are still necessary, since messages will be stored in the file

system and must still be protected from other users at different

security levels. The cost of the high functionality of this class of

designs is that all applications software must be trusted; it either
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must be formally verified, or some other compelling evidence must be

found for concluding that it will not compromise classified information.

Functionality. The functionality of this system is unlimited. The

applications system can be programmed to give the user every convenience

he could obtain from a message system in an unclassified environment.

Ease of Use. The ease of using this system depends upon the

specific software implementation; it is potentially very high because of

the lack of security constraints on software features.

Trust. The system is privileged to violate the security model

completely. Each bit of code must be trusted and have its own evidence

for support. All threats--e.g., Trojan horses, accidental disclosure,

intentional penetration--are viable and cannot be prevented by the host

operating system. In a real sense, the operating system security has

been breached with a system that has all the faults that the operating

system was designed to guard against.

Cost. Verifying or certifying large-scale, high-capability

applications software as trustworthy by today's formal methods can range

from prohibitively expensive to technically infeasible. Furthermore,

all life-cycle modifications will require recertification.

3. Separation of Messages into Headers and

Bodies at Different Security Levels

The third category of multilevel secure message processing systems

incorporates all of the capabilities of the second category (i.e.,

multilevel folders and multilevel message streams) and extends it to

accommodate messages in which the header and body may be at different

security levels.
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As with the previous category, it is implicitly assumed that the

security features of the host operating system will be used to protect

each message header or message body at its particular level and that the

granule of protection at the system level is the file (e.g., Secret

messages headers will be stored in files whose security level is Secret,

etc.). A multilevel message must therefore have pointers to the

different files the parts are stored in. In KSOS, a message could be

implemented.,ds a subdirectory containing a header file and a body file.

Special trusted software must be implemented to move messages because

files of different levels must be read and rewritten.

Design 3.2: Manual upgrade and downgrade.

In this design, both the header and body are upgraded to the

highest level of messages being processed. The upgrading software has

an additional bookkeeping task, that of marking the header and body with

their original levels so the user can remark them correctly. The amount

' of effort required by the user to downgrade both header and body to

* their original levels might well make this approach impractical.

Design 3.3: Upgrade with protected markings, automatic
downgrade.

Again, much as in Design 2.3, both the header and body are

upgraded to the highest level of messages being processed; extra

bookkeeping is required to separately track the message headers and

bodies. In this design, one file could contain all of the fields- for

a particular message, marked by separate security labels. Then an

additional set of routines protected by the secure subsystem is required
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to extract and replace individual fields. All other message system

software must use these trusted routines to access the message.

An additional cost and degradation of trust would occur due to the

need to develop trusted code to handle the additional parsing and

bookkeeping of level markings for internal parts of messages.

Design 3.4: Protected context file.

In Design 2.4, the user switched processes (and security levels)

whenever he wished to manipulate a message of a different security

level. A context file was used to hold information necessary to move

from one message, and one level, to another. The context file informed

the user (and the secure server) of the target level and told the

message system at that level which message or folder to process.

For Design 3.4, we extend the context file by adding pointers for

the header and body files of the message. The user handles each message

by switching to a process at the level of the message part. Thus, he

may have to switch levels between the header and body of the message.

As in the previous category, the secure server could be preloaded with

the correct level to minimize the number of keystrokes required to move

between header and body.

Operations on the entire message, such as moving or deleting it,

are difficult. The user must delete whatever part he can access (which

will be noted in the context file) and then switch levels to delete the

remainder. Similarly, to move a message into a folder, the user must

move each part separately. Additional bookkeeping aids in the context

file could assist these multistep operations, e.g., as preloaded
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commands in the context file that the message system would automatically

invoke when started at the succeeding security level. But with the

additional level switching between parts of a message, the user may

become confused about the security levels of the message parts.

Design 3.5: Secure message system server.

This design differs little from Design 2.5. The only difference

is that the context file that the message system server must maintain is

more complex and adds to the complexity of the server, which must be

verified; the added complexity could add greatly to the cost of

verification. For example, when the user reads a message, the server

must track whether the user is reading the header or body and switch

processes to the correct level to read the remainder of the message. As

with Design 3.4, operations on entire messages, like moving and

deleting messages, either require special trusted software or require

switching processes to move or delete each LA.ssage part.

Design 3.6: Trusted code.

This design is substantially the same as Design 2.6. The

message system is larger and more complex, however, so the problems of

software verification may be more severe.

4. Messages with Fields and Paragraphs
at Different Security Levels

The fourth category of multilevel secure message processing designs

is quite similar to the third, the difference being one of finer

granularity and therefore greater software complexity. These designs
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incorporate all of the capabilities of the third category (i.e.,

multilevel folders and multilevel message streams) and extend them to

handle multilevel messages in which individual fields within the message

and individual paragraphs within the message body may be at different

security levels. In addition, one design in this category provides

granularity at the level of individual words.

As with the previous categories, our initial assumption is that the

operating system security system will be used to protect each message

field or message body paragraph at its particular level. A multilevel

message must contain these message fields and paragraphs or have

pointers to the different files they are stored in. In KSOS, a message

could be implemented as a subdirectory containing files of fields and

paragraphs, since the granularity of the operating system is at the

level of the file.

However, as the granularity of the objects protected by the

security system becomes finer, a question arises as to whether the

operating system security granule (individual files in KSOS) should be

used to protect the security of each user-level data item that has a

different security level. There are three alternatives:

1. The unit of protection in the host operating system

security system maybe used to protect individual data

items. In KSOS this would imply a separate file for each

word, paragraph, or set of these. This same consideration

applies to future operating systems which may more

efficiently protect fine-grained user-level units of

information (i.e., words or paragraphs). For our purposes,
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the corresponding system-level units are equivalent in

status to the file in KSOS; hence, we refer to KSOS files

in our designs, though these often-will not function as

efficiently as may be required. Within this alternative,

there are two possible implementations:

a. Each data item is stored in a separate file (or system-

level security granule).

b. All data items from the same message and having the same

security level are stored in a single file and are marked

as to their relative location in the original message. For

example, a message body with paragraphs 1, 2, and 5

classified Secret and paragraphs 3 and 4 Unclassified would

be stored in two files--a Secret file containing paragraphs

1, 2, and 5, and an Unclassified file containing the

remaining paragraphs. This kind of implementation requires

software to interleave and separate out the individual

items when translating into a representation more suitable

for human processing (e.g., editing). In this

implementation, the integrity of the entire document is in

danger because the markings might be changed, i.e., the

ordering markings on the paragraphs could be altered to

shuffle the locations of the paragraphs in the overall

document.

2. The data items may be protected by a secure subsystem, perhaps

based on protected markings within a file (or other granule).

In this case, the data items would have to be translated in and
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out of the protected format before And,after processing by most

-applications software.

3. Protection of the individual data items within a message may be

the user's responsibility. This may be a viable alternative

because the boundary between messages is a weaker bond than the

boundary between parts of a message or a report. The user may

seldom wish to separate parts of a message and will often want

to manipulate the entire message. In this case, system-level

granules (KSOS files) are classified at the level of the most

highly classified pieces contained in them.

Design 4.2: Manual upgrade and downgrade.

In a design of this type, all of the message fields are upgraded to

the highest level of messages being processed. The upgrading software

has the additional bookkeeping task of marking each field with its

original levels so the user can reclassify correctly. The message

fields are stored originally in separate files and are stored as

highest-level files during message processing.

It appears that downgrading many pieces of a message or document

would be so time-consuming as to make this design infeasible. Instead

of reliably downgrading the overclassified information, the user would

probably tend to leave many messages at artificially high levels of

classification.

Design 4.3: Upgrade with protected markings, automatic downgrade.

Again, all the message fields are upgraded to the highest level of

messages being processed, and extra bookkeeping is required for each.

l..- •.•. . .. " ' " " " --=-=-,-'.,--, :.,.-- d:.--" ," • .,-- --:-- .,2,
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In this case, a single file can contain all of the fields for a

particular message, marked internally with security labels. One

additional set of trusted routines protected by the secure subsystem is

* .required to extract and replace individual fields. All other message

system software must use these routines to access the message.

The additional maintenance of security labels within files for

*. internal parts of messages requires the development of verified code,

-.L which adds to the cost of this class of design.

Design 4.4: Protected context file.

In Design 3.4, the user switched processes (and security levels)

whenever he wished to manipulate a message field of a different security

level, and a context file passed all the necessary information to

. support the move from one message field, and one level, to another. The

context file informed the user (and the secure server) which level to

switch to and informed the message system at that level which message

field, message, and folder to process.

Design 4.4 adds to the context file a pointer to any item of data

in the message. The user handles each message by switching among

processes at the levels of the various items. He may have to switch

levels between fields, or even individual words, in the message. The

secure server can be preloaded with the next correct level, requiring a

minimum of keystrokes for each move. However, changing levels more than

a few times in any particular message will certainly distract the user

from his task to some extent.
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Operations on the entire message, such as moving or deleting the

message, are more difficult for this category, especially if the message

is fragmented by levels. The user must manipulate whatever part he can

access (which will be noted in the context file) and then switch levels

to manipulate the remainder. Additional bookkeeping aids in the context

file could assist in these multistep operations, but this design

rapidly becomes unworkable for fragmented messages, due to added user

effort and the potential for confusion.

One advantage to this design, however, is that each data item can

be manipulated separately by untrusted applications software. For

example, the context file might contain a pointer to a message to be

edited. The user could edit a message part (all at the same level) by

simply invoking an editor on that one part. A multilevel editor would

read the context file for a pointer to the item to edit, call the

untrusted single-level editor, and update the context file when the user

was done editing that particular data item. To move to the next item,

the user would have to switch levels, but the context file would already

contain the editor's context at the new level. Obvious drawbacks to

this design are the computational delays of process switching and editor

startup, user effort to switch levels, user confusion, and delays

incurred in limiting the context file confinement-channel bandwidth.

Design 4.5: Secure message system server.

This design differs little from Design 3.5. Here, the context

file that the secure message system server must maintain is more
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complex; this increases the complexity of the server, which must be

verified. As with Design 4.4, operations on entire messages (e.g.,

moving or deleting messages) require either special trusted software or

switching processes to move or delete each message part.

This design also permits the use of an editor that consists

mainly of untrusted software, with an internal, protected context file

that keeps track of which data are being edited. As with Design 4.4,

the cost of process switching, in time and cycles, is large; but user

effort to switch levels disappears, as does the confinement-channel

limitation. This should greatly reduce the potential for user

confusion, but it could lull the user into dimmed awareness of the

current level. This scheme seems especially practical for editing

documents with large blocks of text at the same security level.

Design 4.6: Trusted code.

On the surface, this design is substantially the same as Design

2.6. Of course, this fine-grained message system is larger and

therefore even more difficult to verify.

However, some headway on workable designs for this design might

be made by building a set of kernel primitives that each have restricted

functions on the data but are verifiable. Thus, this design is not so

much a system design as an applications software design strategy to

limit the amount of code that needs to be verified.

In developing an editor, for example, the strategy leads to the

following result: A trusted MAPPING-IN routine reads individual files

of different security levels into core, constructing a separate bit map
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defining the security level of each character of text. A set of trusted

DELETE and MOVE functions are defined which can manipulate the character

file but which also must manipulate the bit map. A trusted INSERT

routine asks the user for the security level of new text about to be

typed, then enters the new text into both the text-image and the bit

map. Finally, a trusted MAPPING-OUT routine writes the text on to

separate files by security level according to the bit map. Additional

functions could be defined using the above as primitives; these

additional functions need not be verified as to whether they preserve

the mapping, although they do need to be trusted not to access the text

or mapping except by means of the primitive functions.

Such a design, incorporating a kernel of primitives, may be simpler

(and hence much less costly) to verify and trust but would probably

require that the user review and verify the various security levels of

the output text. The editor does have the substantial advantage of

maintaining the security markings on the text instead of requiring the

user to maintain them.
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